ADEM Groundwater Conference June 8, 2011

Carbon Capture and Geologic Sequestration

Southern Company Research & Development in support of Commercial Deployment

By Richard A. Esposito, PhD

Southern Company (NYSE:SO)

One
GREAT Southern Company Generation
Team

- Regional energy company
 - Alabama, Georgia, Gulf, Mississippi, and Southern Nuclear
 - Southern Power largest wholesale power producer in the Southeast
 - Southern Company Services in house engineering & research services
 - More than 46,000 MW of electric generating capacity (79 plants)
- Core service area
 - 120,000 square miles in four southeastern states
 - 4.4 million customers and 26,000 employees
- One of the largest producers of electricity in the U.S. and the largest user of coal

Gas

23 %

Nuclear

Hydro

Geologic sequestration

Diverse storage options

- Deep saline formations
- Storage in oil fields associated with CO₂-EOR
- Storage in coal seams associated with CO₂-ECBM
- Depleted oil and gas fields
- Unconventional reservoirs such as basalt and shale
- Sub-sea bed formations

Southeast storage capacity exceeds 2 trillion tons and provides > 1,000 years of storage for all source emissions in the region

Carbon Capture and Storage

Drivers & R&D objectives

CCS Technology Drivers

- Compliance with carbon legislation or GHG environmental regulation
- 200 years of domestic fossil fuel resources
- Fossil-fuel generation assets/new environmental controls
- Challenging regional renewable portfolio
- World class sequestration geology with strong demand for CO₂-EOR

CCS Research Objectives

- Demonstrate commercially viable option that supports investment decision by 2020
 - Support roll-out of innovative new technology
 - Broaden list of candidate sites/geologies/use options for CO₂
 - Outreach & education with CCS stakeholders

Integrating CO₂-EOR and geologic storage

Saline reservoir pilot injection

Geologic drill cores

Coal seam pilot injection

Gorgas site characterization

Drill exploratory stratigraphic test well
Sample reservoirs and seals
Shoot 2-D seismic profiles
Borehole logging and well-testing techniques
Laboratory analysis/reservoir simulation

Cap rock integrity lab

One GREAT Southern Company Generation Team

Research supported by:

- U.S. Department of Energy
 "Geologic Sequestration Training and
 Research"
- Southern Company
 "Geologic Carbon Sequestration: Cap
 Rock Integrity Laboratory"
- Located at the University of Alabama at Birmingham – Department of Mechanical Engineering (Dr. Peter Walsh)

Purpose:

- Long-term storage integrity
- Reassure stakeholders that geologic sequestration is safe and secure.
- Regulation of injection pressure

CO₂ in groundwater study

Scope of Work

- Simulate CO₂ intrusion into USDW
- Observe effects in the field
- Model experiment

Purpose of Study

- Address stakeholder concerns
- Identify indicator parameters
- Understand abatement options

Lab studies and modeling suggests that CO_2 intrusion into aquifers may mobilize naturally-occurring metals and compromising quality of water. Field pilot projects provide field test-beds to understand the reality of this issue.

National Carbon Capture Center

- Unique flexible testing facility where new processes can be tested on coal derived gas at various scales.
- A technology development facilitator by providing facilities for scale-up from bench-top to engineering-scale.
- Include a wide variety of participants and partners. Find "Best-in-class" Technology.
- Deliver innovation via a collaborative project portfolio that provides an accelerated pathway to cost-effective CO₂ capture technology for coal fueled power production.

Commercial Clean Coal

Demonstrating CCS with IGCC plus EOR in Mississippi

- 2x1 Integrated Gasification Combined Cycle
 - 582 MW peak and 524 MW on syngas
 - ~65% CO₂ capture (~800 lb/MWhr emission rate/equivalent to NGCC)
 - Mine mouth lignite NG Backup
- Owner & operator: Mississippi Power
- Over \$2 billion capital investment
- Commercial operating date: May 2014

Captured CO₂ used for EOR (3.4 MMt/yr)

 Mississippi Public Service Commission certificate issued June 3, 2010

TRIGTM Gasification Process

Transport Integrated Gasification

• Product of more than 15 years research

- Developed at the Power Systems Development Facility (PSDF) in Wilsonville, Alabama; now the National Carbon Capture Center
- Sponsored by the DOE, Southern Company and KBR

IGCC By-Products

Integrated Gasification Combined Cycle

Barry CCS Demo Overview

- Fully integrated CO₂ capture, transport and storage project
- Construct and operate a 25 MW equivalent CO₂ capture unit at Alabama Power's (Southern Co.) Plant Barry
- Construct and operate a 12 mile CO₂ pipeline that will transport CO₂ from Plant Barry to the Citronelle Dome
- Inject 400,000 metric tons of CO₂ into the Paluxy Formation (saline) over 2 to 3 years
- Conduct 3 years of monitoring after CO₂ injection and then close the site

Diverse Project Team

Capture Scope & Objectives

• Scope:

Demonstrate post-combustion capture of CO₂ from Plant
 Barry flue gas using MHI's advanced amine process

• Objectives:

 Demonstrate integrated CO₂ capture under realistic operating conditions typical of a coal-fired plant

- Economics: Establish realistic values for the energy penalty and implementation costs
- Test reliability of solvent-based capture

Simplified schematic post-combustion solvent process

Capture Plant Update

2010 2011

Photos Courtesy of Southern Company

Capture plant & compressor started operations on June 4

CO₂ Pipeline Overview

- Approx. 12 mi to the SE operators unit in Citronelle Field
- Right-of-Way
 - Utility corridor for 80%; 9 land owners
- Pipe specifications
 - 4-in pipe diameter
 - X70 carbon steel
 - DOT 29 CFR 195
 liquid pipeline;
 buried 3 feet with
 surface vegetation
 maintenance
 - 14 directional drills under sensitive
 - Purity is 97% dry CO₂
 at 115°F, 1,500 psig

• Right-of-way habitat (pine forest in the Mobile River watershed; some wetlands)

Storage Scope & Objectives

• Scope:

Demonstrate safe, secure CO₂
 injection and storage in regionally significant saline reservoirs in the southeast U.S. region

• Objectives:

- Identify and mitigate potential leakage risk
- Evaluate local storage capacity, injectivity and trapping mechanisms for the Paluxy Formation (saline reservoirs)
- Demonstrate how a saline reservoir's architecture can be used to maximize
 CO₂ storage and minimize the areal extent of the CO₂ plume
- Test the adaptation of commercially available oil field tools and techniques for monitoring CO₂ storage

System	Series	Stratigraphic Unit	Major Sub Units		Potential Reservoirs and Confining Zones	(
Tertiary	Plio- Pliocene		Citronelle Formation		Freshwater Aquifer	•
	Miocene	Undifferentiated			Freshwater Aquifer	
	Oligocene	Vicksburg Group	Chicasawhay Fm. Bucatunna Clay		Base of USDW Local Confining Unit	,
	Eocene	Jackson Group	9		Minor Saline Reservoir	
		Claiborne Group	Talahatta Fm.		Saline Reservoir	
	e Palaocene	Wilcox Group	Hatchetigbee Sand Bashi Marl Salt Mountain LS		Saline Reservoir	
		Midway Group	Porters Creek Clay		Confining Unit	
Cretaceous	Upper	Selma Group			Confining Unit	
		Eutaw Formation		7	Minor Saline Reservoir	Τe
		Tuscaloosa Group	Upper Tusc.		Minor Saline Reservoir	
			Tus Mid	Marine Shale	Confining Unit	
			Lower Tusc.	Pilot Sand Massive sand	Saline Reservoir	Se
Cretaceous	Lower	Washita-	Dantzler sand Basal Shale		Saline Reservoir	
		Fredericksburg			Primary Confining Unit	
		Paluxy Formation	'Upper' 'Middle' 'Lower'		Proposed Injection Zone	Р
		Mooringsport Formation		1	Confining Unit	
		Ferry Lake Anhydrite			Confining Unit	
		Donovan Sand	'Upper' 'Middle' 'Lower'		Oil Reservoir	
					Minor Saline Reservoir	
					Oil Reservoir	

Stacked Storage Reservoirs

Tertiary Injection Zone (Eutaw Fm.)

Secondary Injection Zone (Tuscaloosa Fm.)

Proposed Injection Zone (Paluxy Fm.)

Citronelle Dome

Sequestration site is on the southeast flank of Citronelle dome in the Paluxy Formation:

- Proven four-way closure
- No evidence of faulting or fracturing
- Large storage capacity with good permeability and porosity
- Multiple local and regional confining units between injection targets and base of USDW
- Historic oil and gas wells provide available geologic information

Esposito R.A., Pashin J.C., Walsh P.M. (2008) Citronelle Dome: A Giant Opportunity for Multi-Zone Carbon Storage and Enhanced Oil Recovery in the Mississippi Interior Salt Basin of Alabama. Environmental Geosciences, v 15, p. 53-62.

Geologic Storage Update

- Characterization Well D9-8#2 started 31-Dec-2010
 - 32 days to drill and install well
 - Total depth 11,817 ft (3,602 m)
 - 98 feet (30 m) of whole core
 - 45 percussion sidewall cores
 - Well logs (Triple Combo, MRI, Mineralogy, Dipole Sonic, CBL)
- Two injection wells to be installed upon receiving UIC permit

Rig on location at well D9-8#2

Characterization well successfully completed January 31, 2011

CO₂ Injection & Monitoring

- Groundwater
- Cross-wellSeismic
- Vertical Seismic Profiling
- P&T (in-zone and above-zone)
- Fluid Sampling
- RST logging
- Tracers

Lessons learned ... start early GREAT

